Osmotic effects on vacuolar ion release in guard cells.
نویسنده
چکیده
Tracer flux experiments in isolated guard cells of Commelina communis L. suggest that the vacuolar ion content is regulated and is reset to a reduced fixed point by abscisic acid (ABA) with no significant change in cytoplasmic content. The effects of changes in external osmotic pressure were investigated by adding and removing mannitol from the bathing solution. Two effects were distinguished. In the new steady state of volume and turgor, the vacuolar ion efflux was sensitive to turgor: efflux increased at high turgor and reduced at lower turgor after the addition of mannitol. These changes were inhibited by phenylarsine oxide and are likely to involve the same channel that is involved in the response to ABA. After a hypoosmotic transfer, there was an additional effect: a fast transient stimulation of vacuolar efflux during the period of water flow into the cell; the size of this hypopeak increased with the size of the hypoosmotic shock, with increased water flow. No corresponding transient in reduced vacuolar efflux was observed upon hyperosmotic transfer. The fast hypopeak was not inhibited by phenylarsine oxide and appears to involve a different ion channel from that involved in the resting efflux, the response to ABA, or the turgor sensitivity. Thus, the tonoplast can sense an osmotic gradient and respond to water flow into the vacuole by increased vacuolar ion efflux, thereby minimizing cytoplasmic dilution. An aquaporin is the most likely sensor and may also be involved in the signal transduction chain.
منابع مشابه
Calcium-Activated K+ Channels and Calcium-Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell Vacuoles Implicated in the Control of Stomatal Closure.
Stomatal closing requires the efflux of K+ from the large vacuolar organelle into the cytosol and across the plasma membrane of guard cells. More than 90% of the K+ released from guard cells during stomatal closure originates from the guard cell vacuole. However, the corresponding molecular mechanisms for the release of K+ from guard cell vacuoles have remained unknown. Rises in the cytoplasmic...
متن کاملCalcium-Activated K+ Channels and Calcium-lnduced Calcium Release by Slow Vacuolar lon Channels in Guard Cell Vacuoles lmplicated in the Control of Stomatal Closure
Stomatal closing requires the efflux of K+ from the large vacuolar organelle into the cytosol and across the plasma membrane of guard cells. More than 90% of the K+ released from guard cells during stomatal closure originates from the guard cell vacuole. However, the corresponding molecular mechanisms for the release of K+ from guard cell vacuoles have remained unknown. Rises in the cytoplasmic...
متن کاملTwo Voltage-Gated, Calcium Release Channels Coreside in the Vacuolar Membrane of Broad Bean Guard Cells.
Voltage-gated, Ca2+ release channels have been characterized at the vacuolar membrane of broad bean guard cells using patch clamps of excised, inside-out membrane patches. The most prevalent Ca2+ release channel had a conductance of 27 pS over voltages negative of the reversal potential (Erev) (cytosol referenced to vacuole), with 5,10, or 20 mM Ca2+ as the charge carrier on the vacuolar side a...
متن کاملWater relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application
Potassium is a major nutrient which may play an important role in many processes such as ion homeostasis in plant cells and osmotic adjustment of guard cells during stomatal opening and closing. Pathumthani 1 (PT1) rice has been reported as being a salt sensitive cultivar and has been selected as a model plant in this study to investigate the possibility of improving the osmotic potential, pigm...
متن کاملAtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis
Water deficit strongly affects crop productivity. Plants control water loss and CO2 uptake by regulating the aperture of the stomatal pores within the leaf epidermis. Stomata aperture is regulated by the two guard cells forming the pore and changing their size in response to ion uptake and release. While our knowledge about potassium and chloride fluxes across the plasma membrane of guard cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 4 شماره
صفحات -
تاریخ انتشار 2006